
Code Presentation

UnderstandinG
the Effects of

by Jason T. Jacques and Per Ola KristenssonIntelligent
Interactive
Systems

Layout & Indentation Syntax Highlighting

Semantic Highlighting

19/10/2015 main.txt 1

/home/jason/projects/Circle/main.txt

int printf(const char * format, ...);

#include<stdio.h>
#include<stdlib.h>

const double pi = 3.14159265;

int main(int argc, char *argv[]) {
double radius, diameter, circumference, area;

if (argc < 2) return -1;
radius = atof(argv[1]);

diameter = 2 * radius;
circumference = pi * diameter;
area = pi * (radius * radius);

printf("Diameter : %f\n", diameter);
printf("Circumference: %f\n", circumference);
printf("Area : %f\n", area);

return 0;
}

19/10/2015 main.c

/home/jason/projects/

int printf(const char * format, ...);

#include<stdio.h>
#include<stdlib.h>

const double pi = 3.14159265;

int main(int argc, char *argv[]) {
double radius, diameter, circumference, area;

if (argc < 2) return -1;
radius = atof(argv[1]);

diameter = 2 * radius;
circumference = pi * diameter;
area = pi * (radius * radius);

printf("Diameter : %f\n", diameter);
printf("Circumference: %f\n", circumference);
printf("Area : %f\n", area);

return 0;
}

02/10/2015 main.c

int printf(const char * format, ...);

#include<stdio.h>
#include<stdlib.h>

const double pi = 3.14159265;

int main(int argc, char *argv[]) {
double radius, diameter, circumference, area;

if (argc < 2) return -1;
radius = atof(argv[1]);

diameter = 2 * radius;
circumference = pi * diameter;
area = pi * (radius * radius);

printf("Diameter : %f\n", diameter);
printf("Circumference: %f\n", circumference);
printf("Area : %f\n", area);

return 0;
}

Figure 1. KDevelop 4.6 rendering a short code sample in the C language using the
DejaVu Sans Mono typeface. From left to right: without syntax highlighting; with basic
syntax highlighting; and with semantic highlighting.

A hypothesis paper presented at PLATEAU 2015:

How code is laid out on screen can be an extremely
personal choice. Layout can suggest relatedness of code
and ideas.

Or it can visually separate distinct ideas.

Indentation can suggest:
 tree structures;
 parent –
 child relationships;
 related ideas;
 or delimit scope.

While some languages enforce this aspect of code style to
varying degrees, in others developers are free to
experiment. Understanding why developers choose
particular techniques can offer insights into their thought
processes.

H1 Limited, consistent indentation assists developer
comprehension.
H2 Grouping and ordering of program statements can assist
developers in identifying patterns and errors.

Typefaces & Fonts
Typefaces can send different messages but from Courier

to Consolas, Lucida Console to Letter Gothic,
we code in a monospace monoculture. Exactly what
developers choose, if they choose at all, can be a matter for
intense debate. Some brave editors are mixing this up,
throwing in proportional typefaces for comments. Even
when editors support differentiating keywords using
multiple styles and fonts why should we limit ourselves to
just one typeface?

H3 Different typefaces aid developers in segmenting code into
component parts, such as program instructions and
comments.
H4 Varying the font, such as using boldface or italic, assists
developers in tokenization of the syntax.

Jaggies. We all hate them. Or do we? The use of anti-aliasing
on text is a proven method to improve the reading speed
and comprehension of prose. How does this effect translate
to code presentation? Text with anti-aliasing applied can
appear “muddy” and “fatiguing.” As screen resolutions and
dimensions increase does it even matter? Anecdotal
commentary seems to suggest that developers combining
small point sizes with anti-aliased text are most aggrieved.
Maybe point-size can be correlated with developer
preferences for text anti-aliasing?

H5 Anti-aliasing improves onscreen code readability at larger
point sizes.

Syntax highlighting helps. Right? Color seems to aid in
tokenizing syntax, but is highlighting all the keywords
(or nouns) in blue really all that helpful?

If only we could all agree. Our color schemes are another one of those hard to
pin down personal choices. But what if there is more to it? Are some color
schemes objectively better? With limited research into how syntax highlighting
affects developers, moving beyond simplistic schemes is a challenge.

H6 Color schemes which help tokenize syntax by exploiting physiological properties
aid readability of code.
H7 High contrast color schemes can induce eye fatigue over long periods of use.

Blue!? The travesty! Purple, surely!

Almost all code reads, modifies, and records data. How data flows through a
program and how it can be used is key to understanding what is actually
going on. Eclipse 3.0, released in 2004, experimented with changing the
presentation of code depending on its sematic meaning, such as using italic
font face for static fields.

KDevelop (Figure 1.) pushes this further, systematically applying colors to
variables to improve recognition. This aids the developer in identifying where
the variable appears in the code, and how it impacts (or is impacted by) other
variables. Helpful when the author of the code thinks color and coIor are
clearly distinct variable names.

You did spot the capital ‘i’ right? Which one? Exercise for the reader.

H8 Highlighting differing scope aids developer identification of the impacts of
changes to variables.
H9 Semantic highlighting aids developer understanding of data flow through code.

jtj21@cam.ac.uk http://jsonj.co.uk/cam/2015/plateau

